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1. INTRODUCTION
A scattering amplitude can be represented as a sum of contributions
SPINS AND BARYONS IN THE from all ways in which the process can occur. Each contribution has
TOPOLOGICAL EXPANSION ' a phase factor, and the scattering amplitude between randomly chosen
states tends to be small due to an averaging-out of these phase factors.
Henry P. Stapp The dominant transitions are between states in which the elements of

Lawrence Berkeley Laboratory order characterizing the initial state are carried into the final
Berkeley, CA 94720
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April 5, 1980 state in some "direct" way.

This tendency of the the dominant transitions to preserve order
ABSTRACT
is particularly important in hadron physics, due to the inherent
Spins, baryons, and the group-theoretic structure
complexity of the hadrons and their interactions. Indeed, this
of the constituent quark model are incorporated into
order-preserving tendency has been made the basis of a successful
the topological expansion scheme of hadron physics.
approximation procedure for meson physics. This procedure is based
not on the smallness of any coupling comstant but rather on the
smallness of contributions that do not preserve order. Order is
defined so that it is preserved by contributions to the scattering
amplitude that correspond to sequences of scattering events
represented by graphs that canbedrawn in a plane with no lines
crossing. Contributions from non planar graphs generally have phase
factors that tend to average to zero in high-energy regimes.

This topological approach to hadron dynamics,which originated
in some works by Venezianol, and has been pursued by many workers,
has been recently reviewed by Chew and Rosenneig. They show how
the topological expansion procedure, combined with the requirements of

unitarity, analyticity, duality, and Lorentz invariance, organizes and

predicts many of the dominant features of meson physics.



The two major deficiencies in the theory described by Chew and
Rosenzwelg are the omission of spins and baryons, The aim of the
present work is to complete the theory by incorporating these two
elements. The group-theoretic properties of the constituent-quark model
of hadrons are also incorporated. Thus the leading baryons constructed
£rom three Kinds of flavors fall into the familar (56, 0°) and (70, 17)
miltiplets. ‘

The theory is formulated completely within the S—matrix framework,
and involves no microscopic description of the hadrons in terms of
quark wave functions. Thus it provides a covariant approach to
hadron physics that incorporates the group-theoretic properties of
the constitutent-quark model and has no confinement problem.

The theory is the product of a long intermittent collaboration
with Geoffrey Chew, and his ideas are woven into it in many ways.

The technical formulations are of my own making, but the general
strategy incorporates key suggestions by Chew.

The present paper is associated with a recent series of papers
by Chew and Poénaru,3 It describes technical results that have been
used in the development of their ideas. However, the aims of Chew
and Poénaru are broader than those of the present work, which
simply accepts the group-theoretic structure of the constituent-
quark model on the basis of its empirical success. Chew and Poénaru
seek to derive the group-theoretic structures from topological
considerations and consequently need a richer topological structure
than the one used here. Their topological structure contains, in

addition to the quark-particle graphs of the present theory, and

surface upon which these graphs are imbedded, alsc a second surface,
called the quantum surface, in which the group-theoretic relations
associated with flavor and other symmetries reside.

In the present work flavor is an unconstrained variable. The
flavor structure may in fact be determined by the nonlinear dynamical
equations, but it is not determined within the present framework by
topological considerations alone.

The theory is based on the covariant treatment of spin provided
by the M function formalism. Since the earlier description of this
formalism4 was very brief the key points are described here in 82,
with particular emphasis on those results that are important in the
context of the present work.

The incorporation of spin into the meson sector is described in
§3. It has two principal innovations, compared to earlier efforts
in this directions, The first is a novel way of incorporating parity
conservation. This procedure allows for effective parity doubling in
the intermediate states at the lowest level of the topological
expansion scheme, although the unphysical-parity particles are
present neither as external particles at any level, nor as intermal
particles in the full theory.

These effective parity doublets are artifacts of an averaging
over phase factors (~1)£ that suppresses certain averaged contri-
butions, and justifies the classification of these contributions
as higher-order in the topological expansion. However,when individual
L values are considered this averaging is not possible, and the

lowest-order approximation is inadequate.



The second novel feature in the meson sector is the absence
of pmr  coupling in lowest order of the topological expansion. This
resonance is quite narrow, and o7T coupling is considered a higher-
order effect.

Baryons are treated in §4. The topological structure is
essentially the same as in the meson sector. This is achieved
by treating the baryon at the lowest-order (zero-entropy) level of
the topological expansion as a quark-diquark combination. The novel
feature in the baryon sector is the introduction of a two-dimensional
representation of the permutation group S3 in association with
each of the vector indices 1 that arise in comnection with the
Regge recurrences of the baryons. The physical amplitudes are
required to be invariant under all permutations of the growp Sq,
applied sepavately o eachibaryon. This imposes a full permutation
symmetry analogous to that of the constituent-quark model, and leads
to the familiar 2 =0 and 2 =1 multiplets.

An appendix contains a brief description of the reasons for the

failure of earlier attemptsé—lo

to incorporate baryons into the topo-
logical expansion.
2. SPIN

2.1. Llorentz Transformations in Spin Space

Let o, represent the Pauli spin-matrix four-vector
- >
OU = (603 015995 03) = {1, 0), (z.1)

where 9 is the two-by-two unit matrix and Gys T and oy are

the three Pauli matrices:

01 0 -i (10
o T (1 0>’ 62=<i 3) Gs“(o ~1>‘ 2.2

let A and B be any two-by-two matrices with determinant ome.

Then the Lorentz transformastion matrix L”v(A,B) is defined by
— \) pund ° Y
Agu B = g, L p(A,B) = (o L)}I (2.3)

{(Repeated vector and spinor indices are always to be summed. )

let SU vepresent the Pauli spin-matrix four vector

511 = (1, -5 ). 2.4

Then

%—Trqg = g, (2.5)

where guv is the Lorentz metric tensor with diagonal elements
(1, -1, -1, -1}.

Let C= -1 o, = - CTT be the (charge) conjugation matrix,
and let M be any two-by-two matrix. Then the Pauli identity

-1

¢t MTcM = det M. (2.6)

entails that

c% Te= 5 2.7
u u

and that
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-1, ,-1 - v
A = LY (A 2.8
B 3, 3, u( 2B} (2.8)
= (gL}
u

To specify four different ways of applying transforms to spin
indices four different types of spinor indices are introduced. The
spin transformation A = A(A,B) acts on the different types of

spinor indices according to the rules:

AGo) = A% 4= (g (2.9)
A = o BE = (em);
g B"l é B8
£ Gh = HEE = @leP
1 . 5 o
A = eT ™ fe eah
o

Thus the transformation to be applied is determined by the location
of the index (upper or lower) and whether it is dotted or undotted.
The operator 4 acts like the identity on any sum of the form

¢awd or ¢é¢8 . For example,

[

A%, ) = ey

Tt

= C AR vy

= P . (2.10)

Let 8y 8py eees By be any set of 2n four-vectors. Then

1 ~
7~Tr 8;°0 8508 830 ... 8, (2.11)

is a Lorentz-invariant function of the four-vectors a To

127" %,

see this let the indices on c11 and 8u be specified always in the

following way:

0“ *’Ouaé Gu »-Guﬁa . (2.12a)
Then (2.3) and (2.8) become
fo, = (ool 8, = (31), (2.12b)

Application of the operator A leaves invariant the trace

(2.11), due to (2.10)}. It gives, alternatively, by virtue of (2.12),
1 . ~
7 Tr ((}»Lal) (gv B Laz) een {UZn" LaZH} . (2,13)

Thus the trace is invariant under any Lorentz transformation of all

the vectors a;-

Two important special cases are

1 ~
7—Tr 81°0 85 = a;° 2, , (2.14a)

which follows from (2.5), and



1 o~ ~
R & N .
2~Tra o a 330 a46

1 2

= (ap- apdlag gy + (- ), - 85) - (3« ajeya)

+ i [al, ays 255 a4] R (2.14b)
where
- B_v, o 8
lay, ay, az, 34] 8182828, € s . (2.15)

Here ¢ is the fully antisymmetric matrix with 1.

£0123

2.2 Covariant Spin-Projection Operators

Let P =mv be the momentum-energy of a freely moving
particle, as measured in some general Lorentz frame Z. Let s
be a spin vector that satisfies s - p = 0. Let ET{V) be
the particle-rest-frame obtained by applying a "boost™ to Z.
This boost is a Lorentz transformation that leaves unchanged any
space component that is perpendicular to V. The vectors v and

s as measured in Zr(v) are

Vo= o™ = 70,9 = (1, 0,0,0) (2.162)

and
T o_ ry - YO =Ty T T T
s = (Su) = (,S » 3) - (O) 51? Szy 53) (2,16b)

The rest-frame projection operator is

10

»T
3

B (s) - )

]

T

G srjuaﬂ =2 " sD. . (2.17)
This operator projects onto the spin state in which the spin is
directed along st = (0, gr} as measured in Er(v], and hence
along s as measured in X.

The operator f’r(s] refers to the rest frame Er(v). To
eliminate this frame dependence cne may apply the boost A(A,R)
that converts B° from its form in Zf(v) to its form in the

general coordinate frame 2
BT(s) > Aqv) BT (s)
3 (M sy a1

- Ls. (v’ + LsT)

N

G (vt s)

i
B

= lwes)-o

P(s, v) . (2.18)

Real Lorentz transformations are generated by matrices A and

B that satisfy A= Bf, where dagger denotes hermitian conjugation.
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For rotations A is umitary, but for boosts A is hermitian. The Another useful form 1is

boost A(A,B) that converts the rest frame form P° into the general s 14+ 90

v,
~ - 0
coordinate system form P is YV oo = W . (2.23)
(2vg
A) = BTy = ATy = /v 5 (2.19a) The operator
-1 +-1 -1 R P(s,v) = .{/vv«c? i 1+3.3 A5 (2.24)
A7v) = B "(v) = B(v) =/V-3 (2.19b) s 2 V.o :
= %- ve8+s 3
wh
ere is called a c¢ovariant spin operator. The vectors v and s
P
occurring in P(s o v) have components W and s¥ that refer to
T = e (. = 8 .2 cinh 8O
Voo 7 G 2 cosh 77 B.G sinh H (2.20) the general frame of veference Z.
and . - Because the boost operators A_1 and B_1 are hermitian,
rather than unitary, the operator P(s, v) is not a true projection
~ 2 ~
Veo= exp6(G -3) = coshg+% .3 sinhag operator: P(s, v)“ # P(s, v) for ¥ # O.
The covariant spin operators are Lorentz invariant spinor
= My functions in the semse that
M
0,2 = als, vy = P, v (2.25)
= vV OtV e S 5 s ° °
=0+ 3. S 9 (2.21) Here A = A(A, B) and L < L{A,B). This result follows directly
: from (2.12).
Note that
2.3 M PFunctions
Consider first a scattering process involving one spimn-%
Voo -5 = 1 Z. . . - . . . .
Ve (2.222) particle in the initial state and one spin-% particle in the final
4 state, and an arbitrary number of spinless particles. Let
an

p = (pa, t; pb,;‘cb;,pc, toseee; Pgo ftd),, where p, is the

V¢ JVvVe.g = 1 . (2.22b) mathematical momentum-energy of the fimal spin-% particle, Py
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is the mathematical momentum-energy of the initial spin-% particle,
and Pos -»+ 5 Py are the mathematical momentum-energy vectors of
the spinless particles. The mathematical momentum-energy vectors are
equal to plus or minus the physical momentum-energy vectors for
final and initial particles respectively. Thus p, = myv, and
Py = - mvy, where vg>0 and Vg>0.

The tj are the mathematical type labels. They are related
to the physical-type labels tgj)hys by the relation tj = t?hys/sign pg,
where tj and -‘tj label relative antiparticles. These type
variables are sometimes suppressed.

According to quantum theovy the probability for a scattering

specified by (p, Sy Sb) is proportional to

1 =T T
Lor 5(s) sm) sy sho) (2.26)
where S(p) is the S matrix. This can be written equivalently as

1 7r Bls,, v) M) Blsy, v) M () (2.27)

where, as in §2.2,

Bs,, v,) = A, 8P (s) A6 (2.282)

ﬁ(sb, v) = /v 8 P(s) v/ v, *5 (2.28b)
and

M) = HN,oo Sp) Vo (2.29a)

W) = Apre ST Ao (2.29b)

The physical probability is assumed to be Loremtz invariant. This

14

physical invariance ensures that if the spin indices of M(p) and

M (p) are assigned spin-index type according to the rules

Mp) ~ Mué (®) (2.30a)
and

+ +
M (p) > Maé ®), (2.30b)

then the spinor functions M(p) and Mf(p) are Lorentz invariant:

for all proper (det L = 1) real Lorentz transformations

e ey = M) (2.31a)

and

AMT(L'I(pD M) , (2.31b)
with
ey = sy, Lpys L, e, L0y (20300)

These invariance properties entail that if ' (p) and m M (p) are

defined by

1t

M(p) m{p) ° © (2.32a)

It

o' @) o,

and

Mf(p) e rrf”‘l(plclJ = m%(p) ° 0 (2.32b)

then the quanti'tigs w (p) and mhl (p) are vector functions of
the set of vectors p:
' (L(p))
' (L))

" n’(@) = (m@) (2.33)
P = E)¥ . (2.338)

It
It
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Consequently, by virtue of (2.12),the spinor functions

M(p) = m“(p)ﬁw = m(p} -5 (2.34a)

and

. _ % - + ~
fifp) = mM ()G = m'(p) - & (2.34b)
are also Lorentz invariant spinor functions:

WL ) = M) (2.352)

and

wete) = dE) . (2.35b)

These simple transformation properties do not hold for the S-matrix

Sp)-

The foregoing discussion can be immediately extended to processes
in which there are =n initial spin %» particles, n final spin %
particles, and n’' spinless particles. In this case the M

function can be written in the form (with type labels suppressed)

o

M(pa15075 PpyoBys Pags Ggs Ppgs By -ee

n
b, oeol
172 n 7 o (2.36)
=m @) * -y
j=1 L1
Hy-eoHp ) .
where m (p) 1is a tensor function of the vectors

S Pans O3 Ppys Bps Ppo--o

i6

p = (pal’pblg tr 0 Pap, Ppp, Proocoos pn”):

n e Yo oow )
nt ey - (n L %i) ml ).,

i=1

(2.37)

The way in which the n initial spin-% particles are associated

with the n final spin-}% particles is immaterial:
any case.
2.4 Parity

Let S(p) be written as S{p) = S,(p) + S_(pJ,

where
S, () =28, (®) -
Here
B = (P> Pys «-o5 P >
@) = o, - By
and
Ié \ - o =
UL%) (pia Pl}

(2.37) holds in

(2.38)

(2.39)

(2.40a)

(2.40b)

Let an intrinsic parity £s be assigned to each particle j,

define the parity operator @ by

N
Pse) = O s .
j=1

(2.41)

and
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The product of ei’»s for allowed processes must be + 1 or -1.

Invariance under parity is then expressed by the equation
Psen = sm. (2.42)

1If this equation is satisfied then Se defined in (2.38) must
N
be zero unless ¢ = [ €. .
ioq 3j
J
Consider a process in which n initial spin-% particles,
i=1, ... ,n, are scattered into n final spin-% particles. Let

Doy and Ppi denote the final and initial mathematical momentum-energies

of the ith particle. Let (pl, cve s By )} denote the momenta of n'
spinless particles that also participate in the reaction. Then

as already mentioned, the M matrix can be written

M(pal’ €415 Pp1> Tp15 -+ 3 Pans Tand Ppps Tppd Prs Tps - eiPpo Gy

By ... M n (i)
= ot e, t) Hoy (2.43)
i=1
where the matrix elements of 0(1) are O 3 The conmnection
=51 Mi%i85

of M(p) to S{p) can be represented by the equation

M@)==@ /vﬂﬂﬁﬁ)swy(g/vmegﬁ%

o 5@ Ay o - (2.44)

Define now

M) = 1/ v o) 5, @) (I o0t ). (2.45)
i - 1

18

Then

<§W> Si(ﬁ)(g/w>

(n/‘vai“&”.) s, <p>(r!/%b. ., gm)
1 1 1

P e v, - 50, (2.46)
- 1

M, (5)

i
I+

f
-

ai

_'_(BV
1

This equation can be inverted to give

- (i) N (i
M @) = =( gi Ve 00D Mi(p)(zil Vpi O 1.)),

(2.47)

The parity transformation applied to the M functions is defined

to be

il
—~
| [ o

P o) e (M v =) u@) (Tvy; o)
i

Then (2.48) and (2.47) ensure that the condition

P M) = M) (2.49)

==

is equivalent to the condition that M be zero unless € =

€5,
i

which is equivalentto the parity invariance condition y B8@)) = SE).
For n distinguishable spin-% particles the no-scattering part

of the S matrix has the form

s = 3 )y (2363 + 2w 2.50
0@3) - i:l (00 )( 'H’) (Pai pbi) i -e ( . )
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hys . o
The corresponding M function is Py Pgiy /sign p.s (2.532)
n . 5
33 - bays . 0 53
Mp®) = I oo 20 S g+ )20y - (2.51) s, = e /sign bl (2.53b)
12
- ki) . o 2
In order that this no-scattering part be invariant under parity tyy < tgiys /signpy; - (2.53¢)
(for each particie i separately) we must take €35 i 1 for
211 i. But then (2.48) gives A similar argument gives
_ hys ;. oS
P, 01 = Cpy- . (2.52) Ppy = Phi /sign Py (2.53)
_ hys ;. o .
This relationship, which stems from the condition that the no- Spi T 7 S&y /sign py; (2.53e)
scattering part be nonzero, is used later.
S ¢ P75 /sign pO (2.536)
2.5 Crossing bi bi 0 Py - .
Analysis of the pole singu}iarityu shows that the analytic
continuation of M(p) along an appropriate path from an original The minus sign in (2.53e) arises from the fact that s,. characterizes

region where pgi >0 to a region where pgi <y gives the the physical spin of the initial particle bi, not minus the physical

function that describes a process in which the final particle of spin. The Ppi and Tpy Were defined originally to be minus the

type tai is replaced by an initial particle of type -t physical momentum-energy vector and minus the physical particle-type

i i€,

by the antiparticle of the original particle of type t_.. If the of the incoming particle (bi), and hence the equations for these are
ai

f£inal particle T4 carries g units of any conserved quantity the same as those for Pai and tai

out of the reaction then the antiparticle 'tai mist carry -q units The quantitites occurring in the transition probability formula
into the reaction., This holds both for the total momentum-energy

Pais for the components of spin, and for any quantity that is TIr %’ (Va * Sa)"a M(pa”ta; Py tb)

conserved by virtue of invariance under a p-independent transformation

property. Consequently, the mathematical momentum-energy vector Pai» % % (vb* Sb) i Mir(pa, ta; Dy tb) (2.54)

the mathematical spin vector Sais and thé mathematical type label

t ; are equal, after the continuation, to minus their physical values: are to be interpreted with the aid of (2.53), Thus, for example, if



21

pg and pg are both positive then the S, and Sy in (2.54)
are s;

t, and tz hysare phys' In this way we can use the same expression

(2.54) in all the different chamnels.

The parity transformation P was defined to be

N n n
Py = (jgl 53-> <i§1 Vai® o> M3 (Lgl Vi "} ; (2.55)

In the original (direct) chammel (PZJL > 0, pgi< 0) the parity

invariance equation %(p}) = M(p) can be written as

N nope 0) ( N ppae 0>
M@ =| I . Il M(P 0
® <j=1 €J>(i=l Mo ?) i=1  Mbi

n' n p.:°0C n P 0
= ( 1 €>( I ~L> M) ( nm P > . (2.56)
j=1 Y \i=1 Tai i=1 pi

=1’

where use has been made of the direct-chammel result ¢ 2i%hi
derived from forward scattering. (See (2.51}).

Analytic continuation to the crossed channel avoids all
singularities of M(p) and M(P). ﬂ;hus equation (2.56) must hold
in all channels, with the factor gl ej from the spinless
particles defined as in the origina:]{”direct channel. This

(n‘ >(n O)/n o
I e, Hsignp.gxn sign py.-
5=1 I \i=1 3\ 3=1 o1
|
i

equation gives

It

M)

n
v..=c> M@)(H v-oc} -
1 el i1 bi i (2.57)

| ==]

phys and vsghys , respectively, and the particle types t, and

22

It will be shown presently that the parity transformation is
defined in all chamnels by (2.55). Thus one can conclude that the

Ej for the spinless particles is channel independent and that
€ .: ep. = - signp°. signpl. . (2.58)
ai *bi ai bi

This means, in particular, that the intrinsic parity of each spin-%
particle must reverse umder continuation to a crosséd channel . and
that the intrinsic parity of a particle-antiparticle pair is -(~H2°
The product of the intrinsic parities of the particles of a
parity conserving process is physically well defined: it is equal
to the sign € in S{p) = eS(p), and hence to («1)2%} The
argument leading to the equivalence of @@(S(p) = S(p)) to
%J(p)) = M(p), with &P as defined in (2.55), was made explicitly
in the direct chamnnel. However, it holds equally well in all chanmels,
provided the same factor &I’; ej occurs in both ,@(S(p)) and
@(M(p)}, Any extra sign orJ;—»}];ase factor em, that one might
introduce into the commection between S(p) and M(p), in any
given physical region, would be the same throughout that physical
region and would drop out of (2.47), and hence not affect the ’
argument that demonstrates the equivalence between e@ (S{p)) = S{p)
and Poi)) = M(p), with PM(p)) defined as in (2.48) or (2.55).
Thus this definition is applicable in all channels, and the result
Z

(2.58) on the intrinsic parities of spin % particles hold,s,.1

2.6 Antiparticle Conjugation

Consider a process in which pZi and p@i are both positive,

so that the two associated particles are both final particles.
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Suppose that s

;= -ty SO that these two final particles are relative

antiparticles.

Consider now an original value of (pai’ pbi) and an analytic
continuation that stays in the physical region of the process, but
interchanges 2 and Py leaving all other p's unchanged. Suppose
we interchange also Sghys and S]ghys . Then the original process and
the second one are physically the same except for the interchange
t; < tyis which is just ty = -ty

Suppose that the transition probabilities for these two processes
were the same. Then the process would be invariant under the

transformation t;e -t Antiparticle conjugation invariance

ai’

is . invariance under the analogous change Tt for all i.
If we keep only one particle-antiparticle pair, for notational

simplicity, the antiparticle conjugation invariance condition

described above is

b e hysy .« 5
Tr(v, + s57° )+8 M(p, ,pp) (v, - sp 708 M (p,, By)
= Tr o+ s PYSIS M, )l - s P9 Mip! 'Y (2.59)
a a Pas Pp/ ¥y b Pas Pplols.

where (2.53) and (2.54) are used, and

0
LI 4
P, = By p, >0
0
P, = Py pp, >0
phys _ _phys
Sa Sh

siPvs . gPws (2.60)

24

To see the consequences of this condition define
E M, t3p,, 0 =u, - o My, TP, )y e o (2.61)
where u, = ]pa/ma and u, = P‘b/mb' Define also
-1
M(i) =z (1:¢) M. (2.62)
Then M=M, , + M and the property (%}2 =1 gives
(+) (-1)° :
& = My - My - (2.63)
i = ; M=z .
Hence if M MH) or M(_) then % %M,_

Insertion of this condition M =:% M into the IH side of

(2.59) gives

Tr (v, + S};hys )& U <o M(pb9 B,) U o
x (n - SEY5 0.8 ueo Wy, B w0
= Tr (Va - S]ghys )0 M (pb, Pa)
% (Vb + S%hys }eC M (Pbs Pa}
= T (v, + SPYSE M, D)0, - ;ghys )3

(2.64)

x M (py, p,)
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where in the second line the relations

Uy 0 up 0= 1 (2.65a)
and
S, - ur o= T usd s, 0 for s_ - u, o= 0
(2.65b)
are used, and in the last line the equations
o=t ¢ (2.66a)
and
§=ct ol (2.66b)

are used. Comparison of (2.64) to the RH side of (2.59), with the

substitutions (2.60) made, shows that the condition M =@ u
implies antiparticle conjugation invariance.

Notice that

@?pa°o = p,;° 0 (2.67a)
and

@v,-0= p,° 0. (2.67b)

Thus both Py° G and B 9, and any superposition of them, is
invariant under %?°

2.7 CPT Invariance

The physical transfrmation corresponding to CPT is
pphys N p@hys i Jphys Jpbhys , phys, _  phys , In <> Out-
J J J J J J
(2.68a)
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The corresponding mathematical transformation is, by virtue of (2.53),

pj ».-pj, Sj —>sj, L (2.68p)

CPT invariance is equivalent to invariance of transition proba-

bilities under the transformation p, - - p, (allj).

J J
Any Lorentz invariant spinor function M(p) is invariant, up toa

sign, under the transformation Fﬁ > - P; (a1l §). For the Lorentz

invariance condition

L (p)) = M(p) (2.69)
applied for the case A = 1, B = - 1 gives, by virtue of (2.3)
and (2.9),
Ng
M(-p) = (-1) M(p), (2.70)

where N is the number of dotted spinor indices (I mean here dotted

d

two-valued spinor indices: Dotted (undotted) spinor indices for

g- particles can be constructed trivially by combining

n + 2n dotted (undotted) two-valued spinor indices by means of the
usual Clebsch-Gordan coeffieients. Thus a dotted spin 'g- spinor

index contributes a term n to Nd)

The matrix B = - 1 can be continuously connected to B =1

by the matrix

eiww o
B(y) = (2.71)

0 e_lﬂw

which satisfies B(0) = 1 and B(1) = - 1.
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Since all Lorentz invariants are invariant under all real and complex
Lorentz transformations the transformation L(A,B) = L(1, B(y)), with
0<y< 1, must generate complex values of the pj, since no real
mass-shell vector pj(w) can interpolate pj > - pj.

The matrices M(p) and M%p) have been assigned the transformation
properties indicated by the indices Mgé (p) and M;é (p). For
real p the matrices M(p) and M+(p) are related by hermitian con-

jugation:

S I O PI (2.72a)
Thus if M is transformed by a real Lorentz transformation to
AMB  then M’ﬁc is transformed to A*M*B* and MM is transformed
to BMAT = AMTB, as indicated by the indices on Mié

For complex Lorentz transformations the condition A = 8" does
not hold. However, (2.72a) is then inappropriate: the appropriate
definition is

%

+ _ & _ :?:'
Mp @ = M )= 0 &) . (2.72p)

°

Ba

This quantity is an analytic function of p, whereas the function
&*

on the RH side of (2.72a) is an analytic function of p . The

function M defined in (2.72b) will continue to satisfy the

Lorentz invariance condition

i=]1

. n .
( ﬁ A(:L)) Mt @,p) (pn( ) Bm}
i=1 i

= M) (2.73)

28

for complex Lorentz transformations.13 Thus in the formula for proba-
N

bilities the factor (—1)-d from (2.70) will be cancelled by the same

factor (-1) d from
+ Ng 4
wip) = D Me) . (2.74)

Hence probabilities will be invariant under CPT.

The order of writing the variables is important. If the variables
in theset of arguments p = (pl, Ty Pys €55 en 3 Py tn) is such
that all variables referring to initial particles stand to the right

of all variables referring to final particles then one may write

P = (Pgips Pyy)- BY convention

S(pfin; pin} = <me [ s H?in >’ (2.75)
where éin is obtained from Pin by reversing the signs of all
energy vectors pj and all type variables tj’ and reversing the

order of the variables. Thus if

P = (pm, T ovee 5 Do @n) (2.76a)

then

Pi = 0P = T oer 5 - By - ). (2.76b)

in n’

The diagram representing < pg. Is | ﬁin.>) is generally

drawn by ordering the lines from top to bottom in the sequence in
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which the corresponding arguments of Pein and Ein appear. The
lines corresponding .to 5in are on the right-hand side; those
corresponding to Pgij, are on the left-hand side. The variables in
(2.50) are in the order (Pla’ pZa, e pr, plb), so that each
particle line goes straight through, without a change in order.

The functions S(p) and ‘M(p) are assumed to be antl symmetric
under the interchange of any two spin-% particle variables ®; > ti)
and (pj, tj). Analytic continuation Pai ™ Pri in (2.51) changes
the sign of (2.51). This sign change is cancelled by the change of
the order of variables required to bring the variables back into the
form Cpfin; pin)' Thus (2.50) and (2.51) hold in all chamnels, for
p= (pfin; pin)’ with the corresponding variables of Pein and
ﬁﬁn occurring in the same order.

With these comventions the relationship (2.45) between M(p)
and S{p) holds in all chamnels.

Combinatoric factors 1/n! are discussed in Appendix A of
Bef. 14.

3. MESONS
3.1 The Zero-Entropy Amplitudes

The basic building blocks of the topological expansion are the

zero-entropy amplitudes. In the meson sector each zero-entropy amplitude

is represented by a simple quark diagram D of the kind shown in

Fig. 1, or by the equivalent quark graph G also shown there.

ST

2 “~ /&/{4 Quark Diagram D \g\q/ #, Quark Graph G(D)

3
Figure 1 A zero-entropy quark diagram D and the equivalent quark

graph G = G(D).
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The quark diagram D is converted to the equivalent quark
graph G = G(D) by simply comnecting to a vertex the ends ofthetwo
quark lines at each opening of D. Thus each vertex of a meson
quark graph G corresponds, at some level of approximation, to
an initial or final particle of a scattering process. The zero-
entropy amplitude corresponding to a process with n particles is
represented, therefore, bya directed circular graph with n vertices.
The n directed edges that commect these vertices all rum in the same
direction, as illustrated in Fig. 1.

The quark graphs are not abstract graphs, but are graphs placed
on an oriented surface. The orientation of the boundary of the
oriented circular disc bounded by the quark line is indicated by a
second arrow, as shown in Figs. 2 and 3. The two graphs of Fig. 2
are equivalent to each other, and the two graphs of Fig. 3 are
equivalent to each other. But those of Fig. 2 are not equivalent

to those of Fig. 3.

@ ®)

Fig. 2. Two equivalent "ortho' graphs c°
1 P o v

(=)
Fig, 3. Two equivalent 'para’ graphs e
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The circular graphs in which the directions of all the guark
lines agree with the direction of the boumdary of the enclosed
oriented disc , as in Fig. 2, are called "ortho" graphs. The
circular graphs in which the directions of all the quark lines are
opposite to the direction of the boundary of the oriented disc, as
in Fig. 3, are called "para™ graphs.

For each ortho or para graph G there is a corresponding

amplitude. If G has n wvertices then this amplitude has a set

@) = (#y,...,1,) of n vector indices. The amplitude corresponding

to G has the form

A(}—l) G, p) = Fm) (G, P)EG, P} , (3.1}

where £(G, p) is a function of the scalar products of the
mathematical momentum-energy vectors p 5 appearing in the set
of arguments p = (pl, Ty5 oo e5Ppo tn)° For any ortho graph

G = GO the function F W (@) , p) is given explicitly by

o n 2.4
F, oG ,p)=- 0 (2m.7)
(1—‘) ’ i:l kS
X § g & ogeee & . 3.2
Tr UUlpl s} GLQ pyeo gun Bheo { )

This factor F () (6°, p) is minus the trace of a matrix formed
from right to left by following the semse of the quark arrows in

¢® and replacing each vertex i by 611-/ /2 and each edge by
i
the ortho quark "‘propagator" Pyit © /mai e where

Pas is the mathematical momentum-energy vector associated with
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the vertex that lies on the ledding end of that quark edge.
£ &° is the para graph obtained from c° by reversing the

orientation of the disc then
‘ _ o
Ay @) = FPa (€, p)). (3.32)

Thus the function A(G, p) is invariant under the parity operation,

in the sense that if PP = @ and PP = & then
g = A . N
P m&%, P = A6 p) (3.5)
The action of & on any A is given by (2.48). Thus
Pe6, p) = £6, B, (3.4a)

and, by virtue of (2.52),

T -1
P - 2, *
Fﬁi) (G, p) =~ i’gl (Zmi)

X Tr(-py * 0) §, (-py = 0) &, .- (Pp*0) &, (3.4
1 1—11 yA 312 n Hy

This spinor part of the para amplitude is minus the trace of a
matrix formed from right to left by following the semse of the
quark arrows in & and replacing each vertex i of GF by

5“1/ YZ  and each edge by the para quark ""propagator” - Pp; ° U/mbjL

T Ut O, where P is the mathematical momentum-energy
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vector associated with the vertex that lies on the trailing end of the
quark edge.

Notice that in both the ortho and para cases the orientation of
the disc points from each edge to the vertex whose momentum appears
in the propagator corresponding to that edge.

Each vertex 1 1is associated with a spin four-vector ;- For

a vector particle 5°p; = 0 and si = - 1. For a pseudo scalar

particle S = Vs and si2 = 1. The vector S5 is the "wave fumction"
of particle i in spin space. The ortho and para amplitudes them-

selves are therefore

o 1 n = 3
AG, p,s) = - (=) Tr(sp8 upo ...s28 wr0)
/L )
o ,
x £(G7, p) (3.5a)
and
n
A(Gp D s) = - (_—_1) Tr{u, 0 S et U0 S °5)
] E /2_ 1 1 " n n
x £(P, p) . (3.5b)
3.2 Parity

tet G° and & be ortho and para graphs related by disc
reversal. Since A(GO) and A(GP) are related by A(Gp) = %(GO), the
sum A(Gp) + A(GO) is invariant under parity. To see this

explicitly use

e e F = £8.°C u;e o
Ul 51 C i i o)

{' + for spin 0 (3-6)

- for spin 1
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to obtain

i

n
-1 A : E

A(Gp, p»s) - ( ) (_l)no of spin 1's

x Tr $1°0 Uy G ovs Spt O Upe G

££ )

n .
- _L) (-1)P0- of spin 0's

i

x Tr $,°0 w.*0 ... S 0t §
1 1 n*% Y ¢

x £) , (3.7)
where £(p) = £(,p) and £2(p) = £(c°,p).

]

Any trace Tr aqe g 4y 0 ase Gous a0 0 is a sum of a scalar

part that is unchanged by a; > & and a psendoscalar part that

changes sign. Since fp(p} = fO@)

i

fo(p) the equations (3.5a)
and (3.7) imply @ith A° = A(G®), AP = A(GF)) that

A® + AP = 2xscalar part of A° (3.8a)
if no. of spin zero's is even
A° s AP = 2 pseudoscalar part of A°

if no.of spin zero's is odd. (3.8b)
This means that A° + AP conserves parity, provided the spin-zero
particles are identified as pseudoscalar particles and the spin-one

particles are identified as vector particles,
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3.3 Antiparticle Conjugation

The ortho and para propagators are (p,; - o)/m ; and
(-pbi . O)/m%i’ respectively. According to (2.67) these forms
are invariant under the antiparticle conjugation operation %ﬁ This
result suggests that thé ortho and para amplitudes should be
separately invariant under caniiparticle conjugation. This invariance
~would, in fact, be strictly implied if the quarks could be considered
separate entities, each with its own initial and final momenta Ppi
and Py It was the analytic continuation Pa; <> Py of these
momenta into each other that was the basis of the discussion of
antiparticle . conjugation in  §2.6. In that context antiparticle
conjugation was equivalent (up to a sign) to reversing the directions
of all the quark arrows. This reversal was accomplished by an
equivalent analytic continuation. In that continuation the vector
p in the propagator p°c/m continues to be the momentum associated
with a fixed - end of the quark lime. Thus an ortho propagator
is transformed into an ortho propagator, and para goes into para.

We therefore define :antiparticle conjugation to be the operation
of reversing the direction of each quark edge, with the ortho-para
type left unchanged. Thus antiparticle conjugation interchanges

the two graphs (a) and (b) of Fig. 4.

1 L

(b)

Fig. 4 Graphs (a) and (b) are related by antiparticle conjugation.

Graph (c) is graph (b) turned over,
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The scalar functions £(p) are assumed to be unchanged by anti-
particle conjugation. Thus the amplitudes associated with graphs

(a) and (b) are

n

o _ 1 ) o . : o . o
A= - ( ;59 (Tr s{°6 wuy°o - S8 u o) £7(p) (3.9a)
and
o 1\ . N
A= - (=) (Trspd upo ... spB 009 £ . (3.9b)
v/ Z
Then use of {2.65) and (2.66) gives
z (Spin)i
A = (1 K (3.10)
5 = a .

"'3.4 Isospin

Quark flavors have not vet been discussed. Introduction of the
up and down quarks yields the w,p,n, and w mesons. To get
the amplitude corresponding to a graph with these mesons as the
external particles one includes for each vertex the isotopic spin

factor £; defined in Fig. 5:

d
emits p+ or w fi = -1
u
u . - -
emits o or W fi =+ 1
d

ol
i\ emits neutral meson £,
u ;

i

N =

1
Figure continued
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d
K\ emits neutral meson fi =
u

Figure 5. The isotopic spin factors. The full zero-emtropy

amplitude for any process involving a set of n of these mesons

is the sum of the amplitudes corresponding to all theways in which the

particles of the reaction can be identified with the vertices of
ortho and para graphs with n vertices.

G-parity is conserved for the ortho and para amplitudes
separately. To see this note that for each ortho {para) graph
contributing to a process there is another ome in which the u and
d quarks are interchanged and the cyclic order of the particles is
reversed. The two associated ortho graphs are related as the two
graphé (a) and {c) of Fig.4 apart from flavor labels. Since (c) is
equivalent to (b) ome obtains the factor (3.10) together with
the isospin factors fi shown in Fig.5. These factors fi combine to
give factors for the graphs (a) and (c) that differ by the factor

Q(—l)(ISOSpin)i, Thus the sum of the two contributions is
i

o o _ ,0 N
A+ At = A 1+ (D) (3.11a)

where
g = Z (Spin)i + (Isospin); . (3.11b)
i

The factor (-l}g is G parity. Hence G parity is comserved

for the ortho and para parts separately.
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3.5 Prpducts

The discontinuity formulas involve products of amplitudes

represented by graphs of the kind 'shown in Fig. 6,

(a)

Figure 6. Diagrams representing products of amplitudes. The
wiggly lines represent the intermediate mesons.

For each wiggly line there is a sum over the single pseudoscalar
meson and the three vector mesons. When this sum is performed the
spinor parts of these products are just the spinor parts of the

functions associated with the diagrams of Fig. 7.
iy —— >

(&) ©

Figure 7. Alternative representation of the spinor parts of the pro-
ducts represented in Fig. 6. A circle with no vertices represents

sTr 1= - 2.
In other words, the spinor parts satisfy the diagrammatic equations
of Fig. 8.

- = - =T

Fig. 8. Spinor Identities
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To obtain this result, and also a more general one, let the four

orthogonal vectors S5 associated with particle 1 be labelled by

ee(0, 1, 2, 3), with s?e = V; for e = 0. To get the correct

normalization we return to the level of the S matrix. Then the

four amplitudes Se are defined by

st =3
S = Tr-2—5
€ V2
. 1o T 08 .
= }% Sg =G SB@ , (3.12)

where the irrelevant indices on S have been suppressed. The
arguments of §2.3 then show that
s, 3

e
S = Tr
© Ve

M. (3.13)

Consider therefore a product of the form

3 3 st g s~ 3 ,
ss' = I (Tr M) (Tr ~=— M ) . (3.14)
€ V2

€ e=0

=
e=0

To evaluate it introduce into the second trace the identity
~ — ~ e —~ 5
S G = v s”°0 Ved (3.153

where v is the velocity *p/m of the relevant particle and

0 _ 1_ 2 3

ST =5y, S T -8y, 8= -5, 87 = - s, (Bach s, isa four vector).
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Thus
3
¥ =
eEO SeSe
1 5 e
5 Z (IrMs, «5)(Trs «gved M ved.(3.16)
e=0
Use of
3 e
2 (s sy = gv (3.17)
e:
gives
3 T
z SS5 =
emg €8
> (T M 5,) & (Tr qyves W' ved)
Use of
a8 - O, B
_12_ 5, &V oy g 8§75 8% (3.18)
gives
3 3 S g S ° g
Z S8 = I (TrM ) (Tr MY
e=g ©°° e=0 V2 /2
=Tr M ved M ves . (3.19

This result says that swmning over all four exchanged particles is
equivalent to running the quark lines straight through, with
metric factors v ° G placed on each quark line that goes

through, as indicated in Fig. 9.
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3
Z (Se V) T

e A = v e &

Figure 9. Diagrammatic representation of (3.19).
The results represented in Figs. 7 and 8 follow

directly from the result represented in Figure 9.
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The two factors v & are cancelled by two factors v ° 0 and

-v = ¢ . The differing signs of these two factors comes from the
differing signs of the vectors p =*mv in the two factors M and

M': discontinuity products always invOlve one initial particle

and one final particle. The extra sign from -v°c supplies the over-
all sign occurring in (3.5): the change shown in Fig. 9 always

changes by one the number of traces. Thus each trace will appear

(or disappear) with its minus sign.

3.6 Topological Classification

Each circular quark graph G corresponding to a zero-entropy
ortho or para amplitude can be transformed by the rule illustrated

in Fig. 10 into a particle graph g = g(G) with one internal vertex.

Figure 10. Transformation of circular ortho and para quark graphs G
into the corresponding basic particle graphs g(G).

If G is a circular graph with n vertices then g(G) is a
tree graph with n edges, n external vertices, and one internal
vertex. This internal vertex of g(G) is classified as ortho or para
according to whether G 1s ortho or para. These two kinds of
internal vertices can be distinguished in the way illustrated in
Fig. 10. The arrow near each internal vertex shows the direction of

rotation of the quark line around that vertex. These graphs g are

called basic particle graphs.
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A product of basic particle graphs 815 8pse-n is formed by identifying

certain pairs of the external vertices, as illustrated in Fig. 11.

Figure 11. A product g of 5 basic particle graphs g;-

Each product graph g has a well defined genus and boundary
structure. These can be calculated by the Edmond's rule. One first
draws all the orbits of g. An orbit of g is a path in g formed as
follows: one picks any point p on any edge of g and a direction
d(p) at that point. Then one traces a path in g by a moving point
p' that starts from p in the direction d(p). At each nontrivial
vertex the moving point p’ shifts to the "next' line, with the order
of the lines specified by the arrow that indicates the quark-line
direction., The orbit is completed when the moving point p' returns
to the original point p moving in the original direction d(p).

Some of the orbits may pass through vertices that lie at the
ends of single (external) edges. These vertices correspond to the
“'external particles' associated with the graph. An orbit that passes
through at least one external-particle vertex is called a boundary.
The boundary structure consists of the collection of boundaries, each
identified by the sequence of external-particle vertices through which
it passes. Each external-particle vertex appears on exactly one boun-
dary. Graphs with only one boundary are called one-boundary graphs.

The number of different orbits of g--sometimes called faces
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of g-- 1is denoted by £(g). The numbers of edges and vertices of
g are denoted by e(g) and v{g), respectively. Then the genus
of g-- sometimes called the handle number--is given by the Ruler

formula

hig) = e(g) - v(g)z- £(g) + 2c(g) (3.20)

where c(g) is the number of connected components of g. The graph of
Fig. 11 has one orbit, which is the boundary (8, 6, 5, 9, 7, 4, 3, 2,3,
and its genus is two.
The zero-genus one-boundary graphs are the planar graphs. They
are the graphs that can be drawn on a plane with no lines crossing
and all external vertices identified with a single point at infinity.
An important characteristic of a graph g is its Betti
mmber A(g), which is the number of independent closed loops that

can be drawn in the graph. Itsvalue is given by
B(g) = e(g) -vi(g + cla. (3.21)

lLet the mmber of boundaries of g be b(g). The orbits that
are not boundaries are called windows, and their number is
w(g) = £(g) - b(g). The most important topological characteristic

of g 1is the topological index

i

v(g) 2h{g) + blg) - dg

(3.22)

i

B{g) - wigl
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This is the number of independent closed loops in ¢ minus the

number of windows. For connected graphs with at least one boundary the

topological index «y(g) is zero if and only if the graph g has
zero-genus and exactly one boundary, ice.,ifand ly if g is planar.
This topological index Y{g) enjoys the following "‘entropy”

property: if 218, is some connected product of two connected graphs

g; and g, then
v(g180= v(g) * v(g) - 1. (3.23)

To prove this let n be the number of vertices at which g

and g, are joined. Then (3.21) gives

8g18) = (g + 8lgy) -1 +n. (3.24)

On the other hand,

wigigy) = wlg) + wlgy) + w'ig.g,) (3.25)

where w‘(gl,gz) is the number of windows of 8,8, that lie
partly in gy and partly in g

Each of these windows that lies partly in each subgraph must
pass at least twice through the n Jjunction points. And each junction

point lies exactly twice on the set of orbits. Thus one has the
inequality

w'i{gy.g) < m, (3.26)
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which combines with (3.24) and (3.22) to give (3.23).

The entropy property (3.23) shows that the topological index
Y(glgz) of a product graph 218, is greater than either component,
provided one of them has y(gi) 1. This means that the topological
complexity, as measured by +(g), increases in general. The
special case y(g;) =1 allows the complexity to remain unchanged.

If one of the graphs has Y(gi) =0 then (3.23) would allow
for a decrease in complexity. However, 1if Y(gl) = 0 and the
product 818, is such that at least one external vertex of gy
is an external vertex alsco of the product graph 99, then the RH
side of (3.26) can be replaced by n - 1, since then at least one
boundary of g,g, must pass twice through the set of junction
points, and  v(g;g,) = v(g;) + v(g,) -

The graphs corresponding to physical-region singularities can
always be constructed by taking successive products g5 87815
832,87, --- SO that the final exterml particles of each newly
added graph are also final external particles of the new product
graph.,l3 I1f the product graphs are built in this way then the
topological index +vy(g) can never decrease.

The product graphs g are classified by thelr overall
boundary structure and genus, and by their decomposition into ortho
and para parts. This decomposition is made as follows: The trivial
two-edge vertices at which two graphs are joined are called junction
vertices. EBach junction vertex that lies on a line joining an ortho
vertex to a para vertex is cut. This cuts the graph into a set of

graphs 24 such that the internal vertices of each graph g; are all of

the same kind, either ortho or para. Each of these graphs g5 has a
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N

boundary structure and genus. The complete topological classification
of the graph g 1is given by specifying the boundary structure and
genus of each part ;s and the set of pairs of external vertices of
the graphs g. that are equated to form the junction vertices of g.

These specifications determine the overall boundary structure
and genus of g itself. However, these overall characteristics
are nevertheless included, redundantly, in the complete topological
specification of g.

Graphs g that have the same topological specifications are
said to lie in the same topological class. The zeroc-entropy graphs
are the graphs g with a single (ortho or para} part g; = 8 and
topological index v(g) = 0. The simplest of these are the basic
graphs g of the kind illustrated in Fig. 10.

The discussion of topological classification given above was
made completely in terms of the particle graph g. 1% is sometimes

useful to combine the particle graph g(G) and the quark graph G into

a single quark-particle graph g(G), in the way illustrated in Fig. 12

G 2(G)

Figure 12. A graph G and the quark-particle graph g{(G) formed
from G. The particle lines of g(G) are drawn as dotted lines in

g(6).
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The orbits of g(G) can be considered to be the independent
closed loops on the quark lines of g(G). Those closed quark-line
loops that pass through vertices are boundaries. Those that do
not are windows. The number of vertices and edges that occurs in
the Buler formula (3.20) for the genus is the number of vertices and
edges of the particle graph g(G), which is a subgraph of g(G).

3.7 Topological Expansion

Each physical-region singularity of the 3 matrix is associated
with a Landau graph g - A formula for the discontinuity around

the singularity associated with graph g, is obtained by replacing

15,16

L
each vertex of g by the corresponding scattering function
This scattering function is specified by the set of edges incident
upon the vertex to which it corresponds. These edges can be

identified with the external edges of the particle graphs g
constructed above.

The topological expansion is the assumption that each scattering
function can be expressed as a sum of terms, one corresponding to
each of the different topological classes specified in the preceding
subsection. This expansion is required to be compatible with the
discontinuity formulas, in the sense that if the full expansion is
introduced into each of the scattering functions that occur in any
discontinuity equation, and the full equation is then decomposed
into terms of different topological class then the terms of each
class separately satisfy the equation: there is no cancellation

among the terms in the equation that have different topological

character. This assumption that the contributims toany discontinuity
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equation corresponding to graphsof the same topological character

should cancel among themselves has been discussed extensively before,
o . . L 15,16,17
in connection with the derivation of the discontinuity formulas .

3.8 The Zero-Entropy Functions

The validity of the topological expansion is assumed. Then the
zero-entropy component of any discontinuity equation can be examined.
Each scattering function is the sum of a pure ortho part plus a
pure para part pilus higher-order terms formed from products of ortho
and para parts. These higher-order parts do not contribute to the
zero-entropy component of the discontinuity equation. Thus the zero-
entropy component separates into two parts, an ortho part and a
para part, each of which must separately be satisfied, since each
belongs, according to our classification scheme, to a separate
topological class.

By virtue of the entropy property the zerc-entropy terms can
be formed only from zero-entropy factors. Thus the scattering
function associated with each vertex of the Landau graph is replaced,

in the ortho (para)zervo-entropy component of the full discontinuity

equation, simply by the zero-entropy ortho (para) amplitude. Consequently

all the discontinuity equations for the zero-entropy ortho (para)
amplitudes are identical to the discontinuity equations for the full
scattering function with two exceptions: (1) the discontinuity
is zero unless the Landau graph is planar; and (2Z) the full scattering
amplitudes are replaced everywhere in the discontinuity equation by the
corresponding ortho ( para ) amplitudes.

By virtue of the occurrence of only those singularities that
correspond to planar Landau graphs the analytic structure of the

ortho and para functions is much simpler than that of the full

Scattering function. T is expected that these functions should have
moving Regge poles but no Regge cuts. They should, in a first
approximation, be similar to the Venezianc dual-resonance model

3
functions,‘g’lg

with the addition of a spin-flavor structure, finite
widths, and a planar singularity structure in momentum space.

3.9 Regge Recurrences

The property represented in (3.19) and Fig. 9 says the spinor factor
in the zero entropy functions A° or AP has the pole-factorization
property indicated in Fig. 13

fw f& et 3 2 i ot

e ;;f”
Figure 13. Pole factorization property.

Thus if fo(p) has a factorizable
pole corresponding to a certain value 2> 1 of angular momentum
transferred between (1, ..., m) and (m+ 1, ..., n) then the full
function A° has factorizable poles corresponding to a set of four
intermediate states, having total angular momentum values J = 2
and &+ 1,2, % - 1.

If £7(p) has Regge behavior of the kind exhibited by the
Veneziano dual-resonance functionlg, then for each factorizable pole
of fo(p) corresponding to orbital angular momentum £ 3> 1 there
will be a quartet of factorizable poles of Ap(p) corresponding to
total engular momentum g and (g + I, 2, 4 - 1).

The function fO(p) is assumed to have a Regge pole with the
lowest & = 0 pole identifiable with our external set of sixteen
mesons  (7,p,w,n), which are assumed to be degenerate in the zero-

entropy level. The higher values of & will then generate recurrences



of the set (7w,p,w,n).

If the functions fo(p

represent the cases where the external particles are recurrences of the

2= 0 mesons then one must
of angular momentum L @
that are such that p; £
product is formed with any

the earlier eguation
Fp) = PEE)

becomes replaced by

o) = PN

When nonzero values of
LA
extra factor of (-1}

This comes from a considera
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)} and fp(p7 are now generalized to

include19 for each external particle 1
set of Ri vector indices, u%l)‘.,ué%)

() = p; * £°(p) = 0 when the inner
(1)

one of the indices uy Consequently,

]
= £29) = £ (3.27a)
n
'Zl 2.
= (DY (3.27b)

1

the Qi are allowed there is also an
in the charge conjugation equation (3.10).

tion of, for example, the two definitions

of o and p  implicit in Figs. l4a and 14b.

pS

()

a4

- g
5
g

ek

b

Figure 14. The normal quark structures of g; and p is shown in

(a), whereas (b) shows the

definition induced by reversing the quark

lines. If the quark wave function has angular momentum Qi then the

difference is represented by a factor (-1] .

In the discussion in

§.4 of isospin invariance there was no

U
oo

change in the definitions of p+ and , of the kind shown in

Fig. 14. However, the function fo{p} was changed due to a reversal of
the order of the arguments. (See Fig. 4(c)) IE the dual-resonance
amplitudelg this change induces a change (-1) iﬂ and we assume

that this property holds also for our function fO(p):

L.

£0p,p) = (D Esp) = POy, p). (3.28)

n

i
The fact that one gets the same factor (-1} 1 by either rever-

sing the direction of the quark arrow, as in Fig. 4, {(a) > (b}, (or
Fig.14, (a) = (b)) or by reversing the cyclic order of the vertices,
as in Fig. 4, (a) ~ (¢}, means that the amplitude corresponding to
a graph does not depend on how this graph is placed on the paper:

the operation of turning over or reflecting a graph, as in Fig. 4,
(b} » (c), does not alter the amplitude corresponding to it. Thus
the equivalence of the two graphs of Fig. 2, or of Fig. 3, is
maintained also for li > 0.

3.10 Suppression of Ortho-Para Mixing

Chew and Rosenzweig have discussed why the amplitudes corresponding
to graphs g with topological index 7v(g) =0 should be suppressed
relative to the v{g) = 0 contributions. A principal damping
mechanism for the amplitudes corresponding to the nonplanar graphs
comes from an averaging over neighboring poles along a Regge trajectory.
In certain situaticns these contributions appear with a factor (-1)£.
If the remaining factors depend smoothly on & then there should be
strong suppression.

The present theory differs from that discussed by Chew and

Rosenzweig by the inclusion of spin. This has led to the ortho



5Z

and para amplitudes, and then to contributions in which ortho
amplitudes are coupled to  para amplitudes.

If 2 1ine 1 of 2 graph g connects an ortho vertex to a para
vertex then (3.27b) introduces a factor (-1)£i into the corresponding
amplitude. This should give a suppression analogous to the one discussed
by Chew and Rosenzweig.

3.11 Parity Doublets

The theory has, by construction, no parity-doublet partners
of the basic  16-plet ({y,0,y5,n). Consider, then, the exact pole-
factorization property "

Residue (A% + AP + AP0y = (A7 + A+ A];'O)-(Ag + A5+ H}Zl‘o)

where Ah'o' represents the higher order terms. (3.29)
Each amplitude (Ag + Ag + A?"O) conserves parity, with the parities
defined in the way specified under Eq. (3.8). This is true for

A? + Ag, by explicit calculation, and will be true in general

because of the general property that each contribution is constructed
from sums over ortho and para parts, not differences. Thus the initial
and final states in (3.29) will have parities that are equal to the
parities of the intermediate particles (w,p,w,n), as defined

under (3.8).

Consider, however, the zero-entropy part of (3.29):

o D AP
A.1 + A1 AZ

=<;+Ap>(AZ %AEZ))

Y2

A% - AP\ /A - AP
(AR

I

Residue (A% + AP)
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The differences (A; - A?) have, by virtue of the results obtained in
§3.2, transitions only between states of opposite parity, provided the
intrinsic parities are defined as under (3.8). Thus the initial

and final states in the last term of {(3.30) have opposite parity to
the initial and final states of the other term. The normal way to
describe this situation is to say that (Ag - Ag) conserves parity,
but couples to the parity-doublet partners of the (7T,0w,n). In

this sense the zero-entropy level of the topological expansion has
parity doublets, even though these are not presemt in the full
solution.

This situation emphasizes the fact that the zero-entropy
approximation is expected to be a good approximation in situations
where one can average over many values of g. The difference between
the "correct" and the zero-entropy forms of the residue is
AR+ AP0

This difference is expected to become small when averaged over many

A =%_ [(A +Ap} 5 + aby —(A —Ap) (A -Ap)}

values of 3, with a smoothly varying weighting factor. But for
individual £ wvalues it is large.
4. BARYONS

4,1 The Zero-Entropy Amplitudes
6-10

Earlier efforts to include baryons in the topological expansion
correspond  to a picture of the baryon as a set of three quarks lying
on the outer edges of three strips whose imner edges lie in close
proximity to a single "dotted” line, called by various authors a

dotted, junction,or mating line. This approach leads to apparently

insurmountable difficulties with the analytic structure. A brief

discussion of these difficulties is given in the appendix.
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Analysis of these difficulties indicates that the zero-entropy
structures for general hadronic processes must be essentially the same
as those for meson processes, namely circular graphs. This can be
achievedby considering some of the edges to represent diquarks. The
theory then has mesons, baryons, antibaryons, and baryonium. Each
meson vertex lies at the junction of two quark edges. Each baryonium
vertex lies at the junction of two diquark edges. Each baryon and
antibaryon vertex lies at the junction of a quark edge and a diquark
edge.

Our convention is to run the quark and diquark edges in opposite
directions around the circular graph, with a quark and diquark edge
running into each baryon vertex and out of each anti baryon vertex.
The quark and diquark edges are drawn as thin and thick lines,
respectively.

The rules for forming the ortho and para amplitudes are
essentially the same as in the meson sector, with the diquark
propagator being the symmetrized form of two quark propagators.

For example, in the ortho amplitudes the diquark propagator is

° AAz 8187
Q392 éléz

s A R A
Z "2 Gulgl a G“ZBZ (4.1)
oSy ALS
172 271
*ue Oaigz ua_sgazgl ) 8 .} s

where ua = pa/ma is formed from the mathematical momentum-energy

vector p, of the particle associated with the vertex that lies

at the leading end of the diquark edge. The para propagator P
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is the same with uy replaced by Wy F - pb/n%, where By, is
the mathematical momentum-energy vector of the particle associated with
the vertex that lies on the trailing end of the diquark edge. The
indices Ai and di are flavor indices.
For each baryon in a scattering function there is a set of
AIAZAZ

( )
04,1(%20(.3

(ui,Ki) of spin-flavor indices. The labelling in (4.1) corresponds to

arguments consisting of an ordered triplet of pairs

assigning the first two pairs to the diquarkandthe finalpair (QS’KB}

to the quark. This particular way of labelling corresponds to one
MA2ts (5'1%23
This contribution is called A !
FISYSN A, F1%2%
17273 4 A(@717273
%1%% %1%%

The superscript (e) designates the position (1, 2, or 3)

contribution to Aalazas
whereas the other two are called A(l}

of the pair of spin-flavor indices that are assigned to the quark.

The three contributions are represented graphically in Fig. 16.

Z
3
A(3) RO
AIAZAS
Figure 16. Three contributions to Ay o o - In contribution A(e)
123

the quark is labelled by the pair of arguments (&i,%i) that stand
in the position e.

This sum over the three ways of labelling the quark is made
independently for each baryon and antibaryon. Thus letting b
be an index that lsbels the baryons and antibaryons that contribute
to a process, and letting PE and P? be the operators that effect

the cyclic permutations (1 2 *3 > 1) and (1 >3 > 2 > 1),
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. AqhsA
3 i 3 3 3y 717273
respectively, on the thyee quark variables associated with baryon or P_ A( )(‘11“20‘3\)@19 015 Hys0p3 we 3 Hys0y :p)
antibaryon b, one may write the full amplitude A as
b b
I7 o+ p, * P Az A
A= o, APB)) (4.2) - (37273%1 ;- ., . v
b 3 : ? ,@ A 50507 (Mlsﬂ']_» Hzs 023 == 5 Hys0y° P)
o:=1
i
b . . - . i=l,.0058
where I~ is the identity operator in the space of the three quark : .
variables associated with baryon or antibaryon b, and A°() and Il (P—)cica' (4.3b)
' i=1
AP(B) are the ortho and para amplitudes in which the guarks are
labelled, for every b, by the arguments standing in the third where (P+)oicé and (P-lsiog are the two-dimensional matrices that
b,b
position in the triad |1 72 23 |. represent the Permutations P, and P_, respectively.
b b b
Gy Gy Og The two-dimensional representation-space associated with each index
The amplitude A associated with the  %th orbital recurrence u; can be considered to arise from the fact that the indices y;
of baryon b has a term that is represented by attaching a set refer to the angular momentum of a three-particle system. In a
(“1", .., Hy) of vector arguments to A. In the case of a baryon or constituent-quark model these vectors would be constructed from the
antibaryon . each of these vector arguments is associated with a vectors
two-dimensional representation space of the group SS of permutations
1
of three objects. Letting the two-valued index that labels the com- oH = J?Zt (ry - rz)u (4.4a)
ponents in this space be denoted by o€ (1, 2) the action of 4
an
PE and _? on A(S) z 2203 4 ) 44 represented as follows:
the super scripts b are now suppressed
¢ P P PP ) W= -1 -1 )", (4.4b)
: 3 1 2
A AR
P+ A(S) 1zs3 (ulsg]_;uzspz; oo ;USL,UQ': P) . . . .
@ 00, which are basis vectors of the two-dimensional representation of the

group of permutation on three objects.

2 (3)13A1A2 . . L To understand the significance of thistwo-dimensional representation
= ’ Toey ‘- ° ¥ ®
“d% A 0.0.G (Ul 90]_ :dz 3013 %o sU/QJ 9072 -P) H (P-JO-]_G:L '
i 37172 i=1 ‘
i=l.... 0t amplitude Aﬁsj would be constructed as follows:
{4.3a)

space consider a simple constituent quark model for the baryon.Then our
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Ay Ay A
A(S}l-ZS

0 01,0 (4595 -0 3Hp IgP)

- f ey dr, 850 + 1, 1)
A
; -£
A(S) ;}:ﬁaé (TI’IZ’TB: P) (r% + rg + r%) /2
1 1
——-(rl - rz) -——(rl - rz}
% /2 T/i- {4.5)
L .
& J%-(Zlg-rl -rz)ul . ;(21*3 - Ty ~r3) %

where the upper [r lower) part of the ith vector factor is used if
o3 is 1 (or 2). The upper vector é:(’_rl—, rZ) gives the angular momentum
of the two quarks of the diquark, whereas the lower vector gives the
angular momentum of the quark-diquark sys‘temzo"
To fix ideas suppose, for example, that Au) (rl, Tys Tyl )
depends on Ty and T, only through the combination (rl - rz)z.
And suppose % = 1. Then the integration in (4.5) will give zero
for the upper component labelled by o = 1, and the function
A(S) (ul,cl) will represent the situation in which the orbital angular
momentum of the quarks in the diquark is zero, whereas that of the
quark-diquark system is one.
The variables | %,)\3, TS) occupying the third position in
the arguments of A{B) play a distinguished role: they label the
quark. The function AU’) is supposed to be the same function, but
with variables lying in the first position playing this distinguished

role:
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() 223 .
A Gy (1‘1, Tys Tyl P)
AR
JESRES (r5> 1> 71 P) - (4.6)

GRrP7

And the function /3A is the sum:

AqA oA
EAlZS(rgr,r:p)=
Qg 1722 73
A oA
I8 N VA
A{ )aioczoas (1‘1, Ty, T3t )
AqA
. AP 23 (T1) 1o, T2 D)
appy 1772703
AqA oA
Y IN2NE
+ al , ; 4.7
oo (ry5 Ty T35 P) (4.7)

AAA
RORE v
agzoq 2773

4

rl:p)

A3 ALY

05301'10('2 (rsy rl; rz : P)

A(3) Ahors

S (rys 15, T3P )

AAghz

O£10L20£3

3
@ +p, +1 Al (r;» 7,0 T5 D) 4.8
These permutations P, and P act on both the spin-flavor
arguments (cci,xi} and also on the arguments ;. These latter
transformations are represented by transformations in the two-

dimensional space spanned by S (1"1 - rz) and L (21”3 T rz],

/B
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RS M

o 00 (Y4595 - 3 Hp 9gP)

1.3 .3 .3 3
“fd rld rzd L § (rl oyt rs)
Ay A
3 AMts 2. 2. 242
A( ) 000 (Tl’TZ’TSZ ) (rl R rs} /
1 1
= (ry - 1) — {ry - 17,)
1 2
g /2 7z (4.5)
E L (Zr3 - T, - 1"2) 1 (21“3 STy - r3) "
/% * M1 B 3

where the upper Or lower) part of the ith vector factor is used if
i
of the two quarks of the diquark, whereas the lower yector gives the
angular momentum of the quark-diquark sys‘tem20

To fix ideas suppose, for exampie, that A(S) (rp Ty, Tgt )
depends on Ty and 1T, only through the combination (rl - rz)z
And suppose £ = 1. Then the integration in (4.5} will give zero
for the upper component labelled by o, =1, and the function
A(s} {ul,ol} will represent the situation in which the orbital angular
momentum of the quarks in the diquark is zero, whereas that of the
quark-diguark system is one.

The variables {043,%3, rs) occupying the third position in
the arguments of A(‘ﬂ play a distinguished role: they label the
A3

quark. The function is supposed to be the same function, but

5

with variables lying in the first position playing this distinguished

role:

. - 1 .
o. is 1 {or Z)}. The upper vector J:(rl‘ 1"2) gives the angular momentum
2z
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A A A
A(S) 123 (rl, Ty, T3t )
ikt
1) 232
AD (rg, 7;5 T,7 D) - (4.6)
a2
And the function /3A 1is the sum:
A A oA «
/3 A s (Tl’TZ’r3:p) =
ceR3
4 A A
A(l} 123 {ry, Ty, Tyl )
ez -
AgA oA
+ A(Z) 13 (rl, Ty, Tzt i3
Rk
Y12z .
+ A T 37 4.
O'VJ_OLZCLS Krlz Tz» TS: pJ ( 7)

\ Aohahs
A T L e, 1t D)
VA
(3) *zh1r2
+ AN (r,, 1 :
ey T30 10 T2 P

RS Ahohg

+ s Tosy iy )
apogpg 10 T2 T3P
AqAah
- i e + T (3] 1 2 S(Y b PR ) e hY
kP_ P-P ,L) A 0610!.2063‘\113 I'Z, IS PJ &4.,8)

These permutations P, and P act on both the spin-flavor
arguments (oci,}\%} and also on the arguments ;. These latter
i :
transformations are represented by transformations in the two-

dimensional space spanned by S {rl - “r.)) and S (er - T, T

z J5 1

3
J

20+
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To see this clearly suppose that the function
Ay AsA

(3)"142%3 )
A 000 (ry, T, T3 P} has the form
YAy 3 22
F ajogey O (rg - v®)) §((r; - 1,07 - ) (4.9)
Then
(3M1A 223 _
A (110.20(,3 ('U}_’ 61. p)
0 » if Cfl = 1
i (4.10)
const. (r(p)) if 0. = 2
My 1

The function A(l} would be identical if expressed in the basis

(4.11)

The result in this basis can be transformed into the original basis
by a transformation representing a cycle permutation.
The most convenient basis for this purpose is the one in which

P, and P_ are diagomal. The two basis vectors im this representation

are
]_ -
={r,*qry, +qr1,)
J3 3 1 2
and
1 -

=(rz*qry+van), (4.12)
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where
1. ./3
q = (-1)1/3 = - -2-— + 1 —? (4.15&)
and
- 2 1. 3
g = q =--1 5 - (4.13b)
In this representation
P = (q O> (4.14a)
+ o (i
and .
P = (q } ; (4.14b)
- 0 q
In this representation the vector ;% (Zr3 STyt rz) is
represented by
1
n’)(s} 5( ! /Z> " (2rg - 1 - Ty {4.15)
1/ yz/ /8
Thus
x _ (M7 1
Py = ( ~ ——-(Zrz - Ty rj)
* a/ V7 6 '
=@ (4.16)
and
a/v2
P W(S) = (Q/ } - _é'(Zr - T, - T,)
- a/v2 /6 Yt T2 73
= w{l) (4.17)
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imbedded. Then for graphs g of topological index Y(g) =0
both the particle graph g and the quark-diquark graph G are
planar, as before.

The quark-diquark lines of g(G) never cross each other in
the imbedding surface. Neither do the particle lines. However, a
quark line may cross a particle line, in the way shown in Fig. 18.
This “'cross-over' constitutes an element of topological complexity,
and is excluded, by definition, from the zero-entropy graphs.

The cross-over quark line in the cross-over diagram of Fig. 18
separates the right-hand part of the strip from the left-hand part.
This transition is treated in exactly the same way as an ortho-para
transition: in the topological Jclassification the graph g(G)
is cut along the cross-over quark line. Thus each part é(G)i
of the full graph has no ortho-para transition and no cross-over
transition.

The surface associated with a general hadron graph g(G)
is not always oriemtable. A simple non orientable graph g(G)

is shown in Fig. 19.

Figure 19, A graph g(G) with non orientsble surface.

The genus of this graph is
- elg) -v(g) - f(g) * 2
h(g) - 7

6-6-1+2 _ 1
Z
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The half-integer value corresponds to the presence of a Y'cross-cap’’,
which can occur on a2 non oriented surface,

The topological index v(g) of the graph g(G) is

y(@ = 8@ - w@

glgl = 1

The number of closed loops 8(g) is the number of independent closed Ioops

in the particle graph represented by the dotted lines of g. The
mmber of windows w(g) is the mumber of orbits of g(G) that do
not pass through any vertex. The entropy property and its proof
ére the same as in the meson case.

4,3 ‘Orbital Suppression Factors

The ortho-para transitions are suppressed by the factor (—]i)2
as in the meson case.

The orbital angular momentum £ is now assumed to reside in the
quark-diquark system. Then the dependence of the amplitudes A(s)
on each of the indices o3 is given by the vector w(S) defined

in (4.15). Thus (4.18) and (4.19) give an explicit orbital angular-

momentum factor

w®ja -+ p, 2] o). @20

Equations (4.13) and (4.14) give
@ty - 1 @.212)

W(SJ I, w(S)) S (4.21b)

oof 1=
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@Bl e 1y o

) bt

{4.21¢)

There is one of these factors for each one of the & indices s
in (4.18). The combination of (4.21) with the ortho-para factor of

2 . s .
(-1)" gives the explicit orbital factors indicated in Fig. 20

o o ¢t
j

, Ty

O "”’.‘f;”' < P o
R e e

o 1% o P H Ay -*
R = S ¢

o) o 1
P »*

Figure 20. Orbital Suppression Factors.

Thus for large & there is,
in an average sense, an explicit suppression of both the ortho-para
and cross-over tramsitions. Hence the dominant large % Dbehavior
should be the one in which there is no ortho-para mixing and no
diquark fragmentation (i.e. no cross-overs) Thus at large £ the
physical Regge trajectories should approach the trajectories of the
zero-entropy amplitudes.

4.4 Particle Spectra

To represent within the gemeral S-matrix context the requirement

of symmetry under the permutations of the variables pertaining to the
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three quarks in each baryon a two-dimensional representation space
of the permutation group was introduced in association with each of
the angular momentum indices ui(i =1, ... ,4) associated with each
baryon or antibaryon recurrence. This representétion space can be
umderstood on the basis of a constituent quark model. However, it
reflects only certain group-theoretic aspects of such a model, not
its dynamical aspects. The dynamics in the present theory is
represented, as usual in S-matrix theory, by the combination of the
on-mass-shell requirements of umitarity, analyticity, duality,and
invariance, where the invariances now includes not only Lorentz
invariance but also permutation invariance on the three indices
associated with each baryon, as defined by (4.3).

Since thepermitation group theoretic structure is the same as that of
the constituent-quark model,with all orbital angular momentum in the
quark-diquark separation, the theory yields the usual particle spectra
at the lowest g-values, and in particular the usual (56, 0+) and
(70, 1) multipliets.The zero-entropy equations should generate a
single Regge trajectory corresponding to these two multiplets. If
the various suppression mechanisms are indeed operative then the
higher-order corrections to these trajectories should be suppressed
at high g2-values, and hence the physical even and odd trajectories
should merge at high 2. An important test of the theory will be
the calculation of the separations of these trajectories as one
moves to lower & values. The corresponding calculation in the

2
vector meson sector were successful”.



68

Another important test will be the calculation of the separation
between the vector and pseudoscalar meson trajectories. A third
. . . + -
important test will be the calculation of the po >~ T decay rate.

Apendix.Failure of the Edrlier Schemes
6-10

In the earlier baryon schemes the product represented by

the graphs of Fig. 21 was classified as zero entropy.

% roos cosa00 saasss s oo

(a) ®)
Figure 21. A product classified as zero entropy by the earlier baryon
topological expansions schemes. The quarks, mesons, and baryons are
represented by solid, wiggly, and dashed lines, respectively. The
dotted lines are called "dotted” "junction', or "mating' lines by

different authors.

The zero-entropy amplitude represented by the quark graph on the RH

side of Fig. 2la has a pole singularity, and the discontinuity
represented by Fig. 2la has,consequently, an ice-cream-cone

diagram singularity represented by the graphsof Fig. 22.

(a) (b)

Fig. 22, Graphs representing an ice-cream cone diagram singularity.
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This singularity is also classified as zero entropy, and hence
this singularity should be present in the zero-entropy amplitude.

This singularity can be followed analytically into the crossed
channel that corresponds to reading Fig. 22(b) from bottom to top.
However,Fig. 22(a) shows that the singularity corresponding to the
top part of Fig. 22(b) has nonzero entropy, and hence does not lie
in the zero-entropy part of the corresponding amplitude. Thus a zero-
entropy ice-cream-cone diagran1singulafityliesine;part of the crossed-
channel normal-threshold discontinuity that is formed by combi-
ning a zero-entropy amplitude with a non zero-entropy amplitude. This
constitutes a failure of the homogeneity property of zero-entropy
amplitudes whereby all zero-entropy singularities are obtained by
using only the zevro-entropy parts of the ampiitudes that occur in the
various physical discontimuity formulas.

Any attempt to disrupt the usual tightly knit crossing structure
by putting crossed-chamnel singularities obtained by analytic
continuation of 2 zero-entropy amplitude into some other term of
the topological expansion would surely preclude the possibility of
any natural solution to the zero-entropy equations. On the other
hand, the inclusion of an amplitude with nonzero entropy into the
crossed-channel normal-threshold discontinuity equation for a zero-
entropy amplitude would destroy the closure property of the

equations for the zero-entropy functions.
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